Direct Activation of Sleep-Promoting VLPO Neurons by Volatile Anesthetics Contributes to Anesthetic Hypnosis
نویسندگان
چکیده
BACKGROUND Despite seventeen decades of continuous clinical use, the neuronal mechanisms through which volatile anesthetics act to produce unconsciousness remain obscure. One emerging possibility is that anesthetics exert their hypnotic effects by hijacking endogenous arousal circuits. A key sleep-promoting component of this circuitry is the ventrolateral preoptic nucleus (VLPO), a hypothalamic region containing both state-independent neurons and neurons that preferentially fire during natural sleep. RESULTS Using c-Fos immunohistochemistry as a biomarker for antecedent neuronal activity, we show that isoflurane and halothane increase the number of active neurons in the VLPO, but only when mice are sedated or unconscious. Destroying VLPO neurons produces an acute resistance to isoflurane-induced hypnosis. Electrophysiological studies prove that the neurons depolarized by isoflurane belong to the subpopulation of VLPO neurons responsible for promoting natural sleep, whereas neighboring non-sleep-active VLPO neurons are unaffected by isoflurane. Finally, we show that this anesthetic-induced depolarization is not solely due to a presynaptic inhibition of wake-active neurons as previously hypothesized but rather is due to a direct postsynaptic effect on VLPO neurons themselves arising from the closing of a background potassium conductance. CONCLUSIONS Cumulatively, this work demonstrates that anesthetics are capable of directly activating endogenous sleep-promoting networks and that such actions contribute to their hypnotic properties.
منابع مشابه
GABAergic ventrolateral pre-optic nucleus neurons are involved in the mediation of the anesthetic hypnosis induced by propofol
Intravenous anesthetics have been used clinically to induce unconsciousness for seventeen decades, however the mechanism of anesthetic‑induced unconsciousness remains to be fully elucidated. It has previously been demonstrated that anesthetics exert sedative effects by acting on endoge-nous sleep‑arousal circuits. However, few studies focus on the ventrolateral pre‑optic (VLPO) to locus coerule...
متن کاملInvestigate the mechanisms of anesthetic-induced unconsciousness in a mouse model by high-resolution manganese enhanced MRI (MEMRI) technique: A Preliminary Study
INTRODUCTION: Manganese is a useful contrast agent for MRI of animals [1], which utilizes the fact that paramagnetic manganese ions (Mn) enter synaptically activated neurons through voltage-gated calcium channels [2], resulting in enhancement on T1-weighted MRI images. Although much progress has been made deciphering the effects of anesthetics upon individual ion channels, we are only beginning...
متن کاملα2-Adrenergic stimulation of the ventrolateral preoptic nucleus destabilizes the anesthetic state.
The sleep-promoting ventrolateral preoptic nucleus (VLPO) shares reciprocal inhibitory inputs with wake-active neuronal nuclei, including the locus ceruleus. Electrophysiologically, sleep-promoting neurons in the VLPO are directly depolarized by the general anesthetic isoflurane and hyperpolarized by norepinephrine, a wake-promoting neurotransmitter. However, the integration of these competing ...
متن کاملAn emerging link between general anesthesia and sleep.
T wo of the most enigmatic and challenging problems in neuroscience are the search for the function of sleep and understanding the mechanism by which volatile chemicals can induce general anesthesia. Despite the apparent similarity of sleep and anesthesia to the neophyte, it is widely argued that these brain states are actually apples and oranges, sleep being readily reversible (thankfully), wh...
متن کاملGlucose Induces Slow-Wave Sleep by Exciting the Sleep-Promoting Neurons in the Ventrolateral Preoptic Nucleus: A New Link between Sleep and Metabolism.
UNLABELLED Sleep-active neurons located in the ventrolateral preoptic nucleus (VLPO) play a crucial role in the induction and maintenance of slow-wave sleep (SWS). However, the cellular and molecular mechanisms responsible for their activation at sleep onset remain poorly understood. Here, we test the hypothesis that a rise in extracellular glucose concentration in the VLPO can promote sleep by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 22 شماره
صفحات -
تاریخ انتشار 2012